ABG soccer community disagree with change of venues

first_imgDescribing it as a major blow to the organizing committee on the ground, who have spent sleepless nights preparing for the event.President of the Bougainville Football Federation Justine Helele told PNG Loop in Buka that he only learnt of the change of venue by reading it in the Post Courier.“According to our NGI Presidents meeting in Goroka, Buka was chosen and we were all preparing and looking forward to the event but then without notice it changed.” Helele said.“We have now missed out on a lot of opportunities for Bougainville soccer, first of all we were never notified of the change of venue, and now all teams participating will miss out on the 20 percent discount offered by Chebu shipping.” he said.“Road construction company Raibro currently sealing the second phase of the Buka ring road have pledged sponsorship and were waiting to announce it during the Besta cup when it will be held here, in Buka,” he said.The member for Haku Constituency in the ABG Robert Tulsa had taken the initiative to head the organizing committee and it has also been a major blow for him too.last_img read more

Cancer genes help deer antlers grow

first_imgCancer genes help deer antlers grow Horns and antlers evolved once in an ancestor to all these animals, they found. What’s more, these new structures emerged when genes that help build nerve, bone, and skin tissue altered and became active in forming these bony protrusions, Qiu and colleagues report today in Science. In particular, changes to genes involved in bone formation and the development of an embryonic tissue called the neural crest likely helped lead to headgear in the first place. As further evidence of a single origin for bony headgear, Chinese water deer and two species of musk deer, both of which lack antlers, have a mutation in one of the genes linked to bone formation.In regular deer, the researchers found eight active genes that are normally involved in promoting tumor formation and growth. That suggests, Qiu says, that antler growth is more like that of bone cancer than that of typical bones. However, in contrast to bone cancer, where tumors grow unchecked, antler growth is tightly regulated by the activity of tumor-suppressing and tumor-growth-inhibiting genes, the team reports.“Deer antlers [are] using essentially a controlled form of bone cancer growth,” says Edward Davis, an evolutionary paleobiologist at the University of Oregon in Eugene who was not involved with the work. The involvement of the tumor-promoting genes isn’t surprising, he says; what’s surprising is the involvement of the cancer-controlling genes.But that surprise may have done more than just turbocharge deer antler growth. The cancer-suppressing genes that keep growth in check also protect against cancer in general, Qiu says. Zoos, for example, have documented cancer rates in deer that are five times lower than rates in other mammals—perhaps, Davis says, a “happy accident” of antler evolution. Email Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Antlers are some of the fastest-growing bone in the animal kingdom: Deer, moose, elk, and reindeer sprout up to half a meter of new bone growth in a month prior to the mating season. Now, researchers studying their genomes have discovered how. Genes that both promote and suppress cancer are partially responsible, suggesting the bony tissue may reveal new ways to fight cancer.The study started when scientists in China and their colleagues abroad sequenced the genomes of 44 ruminants, including cows, deer, giraffes, pronghorn sheep, and other mammals that have complex stomachs for digesting plants. Many of these ruminants sprout bony protrusions, including the skin- and hair-covered bony ossicles of giraffes; the horns of cattle, which have an additional hard sheath; pronghorns in which this sheath is shed every year; and the annually shed antlers of deer, elk, and moose.The scientists then looked for the genes underlying the evolution and development of this headgear. Qiang Qiu, a geneticist from Northwestern Polytechnical University in Xi’an, China, and colleagues mapped out which genes were active in 16 live tissues from sheep, goats, and deer, including horns and antlers. They also assessed which genes were active in the developing embryos of some animals.center_img Sign up for our daily newsletter Get more great content like this delivered right to you! Country Click to view the privacy policy. Required fields are indicated by an asterisk (*) By Elizabeth PennisiJun. 20, 2019 , 2:00 PMlast_img read more